Tetrahedron Letters,Vol.26,No.17,pp 2111-2114,1985 0040-4039/85 \$3.00 + .00 Printed in Great Britain ©1985 Pergamon Press Ltd.

MECHANISM OF LEVULINIC ACID FORMATION

Jaroslav Horvat, Branimir Klaić, Biserka Metelko and Vitomir Šunjić*

"Ruder Bošković" Institute, Department of Organic Chemistry and Biochemistry, 41001 Zagreb, P.O.B. 1016 Yugoslavia

<u>Summary</u>: Based on the intermediates revealed by ${}^{13}C$ -NMR spectroscopy, the mechanism of levulinic acid (<u>6</u>) formation in acid catalysed hydrolysis of 2-hydroxymethylfurane (<u>1</u>) and 5-hydroxymethylfuran-2-carbaldehyde (<u>14</u>) is proposed.

Acid catalysed degradation of hexoses into levulinic acid $(\underline{6})$ has been known for more than a century.¹ This reaction implies a puzzling transformation of the 6-hydroxymethyl group in hexoses into a methyl group of the final product. A plausible mechanism for the formation of the intermediary 5-hydroxymethyl-2-carbaldehyde (<u>14</u>) was advanced by Haworth and Jones²; compound <u>14</u> was quantitatively formed under anhydrous conditions.³ An early mechanistic proposal⁴ for conversion of <u>14</u> into levulinic acid (<u>6</u>) was later corrected^{5,6} on the basis of the structures proposed (though not spectroscopically confirmed) for some isolated intermediates in the acid catalysed methanolysis of hydroxymethylfurane 1.

We revisited the mechanism of formation of 6 by monitoring the hydrolysis of 1, its 2-methyl congener 11, and 14 by 13 C-NMR spectroscopy. On dissolving 1 and 11 in dil. aq. hydrochloric acid, both compounds turned within 10-15 min. at ambient temperature into oils, that were separated and analysed by 13 C-NMR. Compound 1 gave a mixture of the unsaturated acetal 2 and its dehydration product 3, as well as a minor quantity of an unsaturated ketone derivative, presumably 5. Compound 11 transformed into a mixture of the hemiacetal 12 and the open-chain derivative 13 (Scheme 1 and 2, Table), which underwent complete polymerization above 70° C.

When the acidic solutions containing 2 and 3 were heated at the same temperature complete conversion into levulinic acid took place. Since no traces of neither <u>a</u> (enolic form of α -angelica lactone <u>4</u>) nor <u>4</u> were observed, <u>4</u> can be eliminated as the intermediate. We found the latter compound to be stable, and completely in its carbonyl form under above conditions.⁷ Acid catalysed methanolysis of <u>1</u>, under conditions described for preparative scale experiments⁶, revealed accumulation of the open-chain intermediates <u>8</u> and <u>9</u> along with the final ester <u>10</u>. No cyclic intermediates possessing a

2111

Compound	с ₁	C ₂	с ₃	C ₄	с ₅	с _б
1	57.2 (t)	156.0 (s)	109.0 (d)	112.0 (d)	143.7 (d)	
2	56.8 (t)	153.3 (s)	110.3 (d)	27.3 (t)	107.1 (d)	
<u>3</u>	108.4 (t)	151.3	105.2	141.4 (d)	106.5 (d)	
4	13.9 (q)	153.2 (s)	99.5 (d)	34.1 (t)	170.0 (s)	
5	27.2	206.4	126.6	137.3	108 ^g	
6	29.6 (q)	208.3 (s)	37.9 (t)	27.9 (t)	177.3 (s)	
7^{f}	78.4	143.7	108.5	28.3	108.1	
$\overline{8}^{f}$	30.0	208 ^g	39.9	66.5	108 ^g	
$\frac{1}{9}^{f}$	27.8	208 ^g	128.3	135.1	110 ^g	
10	29.5 (q)	206.9 (s)	38.0 (t)	28.0 (t)	173.4 (s)	51.6
11	11.9 (q)	151.1 (s)	104.6 (d)	109.5 (d)	139.9 (d)	
12	12.1 (q)	153.0 (s)	105.2 (d)	28.6 (t)	105.0 (d)	
13	27 ^g	206.2 ^d	35.2°	36.1°	205.5 ^d	
14	58.3 (t.)	153.6 (s)	113.0 (d)	128.4 (d)	163.4 (s)	181.2
15	65.2 (t)	113.4 (s)	26.9 (t)	125.4	153.5	192.2
16	26.8	207.5 ^e	128.8	138.7	209.8 ^e	184.6

Table 1. ¹³C-NMR Chemical Shifts (in ppm) for the Compounds 1-16^{a,b}

a. Numbering of the C-atoms is exemplified on the formulas of the compounds 1, 6, 4, and 16 in the Schemes 1 and 2.

- b. Multiplicities of the signals in the off resonance experiments are given in parenthesis.
- c, d, e. Assignments may be interchanged.
- f. The signals of the methoxy group carbons appear between 55-58 ppm.
- g. Assignments are ambiguous, more than one signal being present in the narrow region.

methyl group on the cyclic acetals were observed. This result indicates that the cyclic acetals isolated earlier^{5,6} were formed during the distillation procedure.

Finally, during the hydrolysis of <u>14</u> which required somewhat higher temperature ($\sim 100^{\circ}$ C), the formation of the two intermediates (<u>15</u> and <u>16</u>) was demonstrated (Scheme 2, Table). Obviously, the first one (<u>15</u>) resulted from the regioselective 2,3-addition of water on <u>14</u> and presumably polymerized <u>via b</u>. (similarly as <u>11</u> polymerized <u>via 12</u> and <u>13</u>). The "correct" 4,5-addition of water on <u>14</u> should give <u>A</u> which then undergoes a similar sequence of transformations as <u>2</u>,including the decarboxylation step of the detectable intermediate 16.

Full account of the present work will appear in a forthcoming paper.

SCHEME 1.

- R. Grote and W. Tollens, Liebigs Ann. Chem. <u>175</u> (1876) 183; <u>ibid</u>. 206 (1880) 226.
- 2. W.N. Haworth and M.G. Jones, J. Chem. Soc. 1944, 667.
- 3. H.H. Szmant and J.D. Chundary, J. Chem. Techn. Biotechn. 31 (1981) 13
- 4. H.S. Isbell, J. Res. Nat. Bur. Stand <u>32</u> (1944) 45.
- 5. K.G. Lewis, J. Chem. Soc. <u>195</u>7, 531.
- 6. L. Birkhofer and R. Dutz, Liebigs Ann. Chem. 608 (1957) 7.
- 7. This finding contradicts the earlier one (based on UV-spectroscopic data) that $\underline{6}$ exists in the enolic form.⁸
- 8. D.P. Langlois and H. Wolff, J. Am. Chem. Soc. <u>70</u> (1948) 2624. (Received in UK 28 February 1985)